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Convection in a rotating cylindrical annulus 
Part 3. Vacillating and spatially modulated flows 
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(Received 9 March 1992) 

The problem of convection driven by radial buoyancy in a rotating cylindrical 
annulus with conical end surfaces represents one of the basic models of rotating fluid 
dynamics with applications to convection in planets and stars. Although only two- 
dimensional equations govern the flow in the limit of high rotation rates, a surprising 
variety of different states of motion can be found. In this paper earlier numerical 
work is extended by the consideration of rigid boundary conditions at the cylindrical 
walls and by a study of spatially modulated convection. Of particular interest is the 
case of curved conical end surfaces which appears to promote the formation of 
separate cylindrical convection layers. 

1. Introduction 
Convection driven by thermal buoyancy in rotating systems is of basic interest in 

fluid dynamics for two reasons. On the one hand i t  represents a fundamental process 
in planetary and stellar atmospheres. Because of the complications arising from the 
varying angle between the vectors of gravity and rotation in the spherical geometry, 
the study of fluid layers with a fixed angle between the two vectors has been 
preferred. In particular cases with a vertical or a horizontal axis of rotation have 
been investigated. These studies have led to a second motivation for the rising 
interest in the problem. It has turned out that convection in rotating layers exhibits 
unusual features in its nonlinear dynamics. In the case of a vertical axis of rotation, 
the evolution of the Kuppers-Lortz instability leads to an interesting case of phase 
turbulence (Kuppers & Lortz 1969; Busse & Clever 1979; Busse & Heikes 1980; 
Busse 1984). In the case of a layer with a horizontal axis of rotation a sequence of 
transitions to time-dependent states with increasing complexity has been found (Or 
& Busse 1987, hereinafter referred to as OB87) while the convection flow preserves 
its dependence on only two spatial coordinates. This latter property makes it an ideal 
problem for investigation by numerical methods and has motivated the analysis 
presented in this paper. 

Convection in a layer heated from below with a horizontal axis of rotation can be 
easily realized in the laboratory through the use of the centrifugal force as the 
effective gravity. Two coaxial cylinders, the outer one heated, the inner one cooled, 
are rotated rigidly about their common axis. This axis is oriented vertically in the 
laboratory frame of reference in order to avoid fluctuating effects from the Earth’s 
gravity in the rotating system. When the temperature difference across the fluid- 
filled annular gap between the cylinders is sufficiently large, convection driven by 
centrifugal buoyancy sets in. The preferred convection flow assumes the form of rolls 
aligned with the axis of rotation (Busse 1970). In  the limit of a small gap width the 
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FIGURE 1. Geometric configuration of the rotating cylindrical annulus. 
The angle x equals arctan v0. 

plane-layer approximation can be used. In this case the convection rolld are identical 
to those in a non-rotating Rayleigh-BBnard layer as long as the end boundaries are 
parallel and sufficiently distant such that the Ekman layers at these boundaries have 
a minimal effect. This property is due to the geostrophic equilibrium satisfied by the 
rolls which ensures that the Coriolis force is balanced entirely by the pressure 
gradient. The more interesting case is obtained when conical end boundaries are 
assumed such that the depth of the fluid in the direction of the axis of rotation varies 
with the distance from the axis. The geostrophic balance cannot be satisfied 
completely in this case with the consequence of Rossby-wave-like dynamics of the 
convection rolls. At the same time the azimuthal wavenumber of the preferred 
convection roll increases in order to optimize the release of potential energy. Because 
the influence of the boundary conditions a t  the cylindrical sidewalls disappears in the 
limit of high rotation rates, the annulus model can be applied with minor 
modifications to the case of a sphere (Busse 1970, 1982, 1986). We thus expect that 
much of the dynamics that can be studied on the basis of two-dimensional equations 
in the case of the cylindrical annulus will be representative for the more complex 
situation of convection in rotating spheres. 

The goal of this paper is to give a more detailed description of some of the 
transitions found in the analysis of OB87 and to focus in particular on the 
modulational instabilities of the singly periodic roll pattern. After formulating 
the mathematical problem and the method of solution in $2 we turn to the analysis 
of the stability of steadily drifting rolls in $3. In $4 vacillating convection rolls of 
various kind are investigated and in $5 the interesting case of curved conical end 
surfaces is considered. The paper closes with an outlook on applications to the 
dynamics in the major planets. 

2. Formulation of the mathematical problem and method of analysis 
We consider a fluid-filled cylindrical annulus of height L rotating about its axis of 

symmetry with the constant angular velocity Q. The mean radius of the angular gap 
is r,, and its thickness is D .  The cylindrical walls are kept at  the temperatures and 
q. Buoyancy-driven thermal convection occurs through the action of the centrifugal 
force when the temperature T, at the outer cylindrical wall exceeds TI by a 
sufficiently large amount. For a dimensionless description we introduce D as 
lengthscale, D 2 / v  as timescale where v is the kinematic viscosity, and (T,-T,)P as 
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temperature scale where P is the Prandtl number. Assuming the small-gap 
approximation, D Q ro, we introduce a Cartesian system of coordinates with the (2, 

y ,  2)-coordinates pointing in the radial, azimuthal and axial directions, respectively, 
as shown in figure 1 .  The end surfaces are assumed to be symmetric with respect to 
the equatorial plane with 

7 = T o ( 1  +EX) (2.1) 

representing the tangent of the angle of inclination x. The velocity field of convection 
can be written in the form 

v = V x k$(x, y ,  t )  + 6, (2.2) 

where k is the axial unit vector and 6 represents the ageostrophic component of tc 
which is of the order qo for small values of this parameter. As shown by Busse (1970, 
1986) the following dimensionless equations for $ and for the deviation 0 of the 
temperature from the static distribution are obtained for small qo : 

a a a a a  a 
(at ay ax ax a 3  ay 

P -+-$-----$- e+-$-A2e = 0, (2.3b) 

where the Rayleigh number R, the Prandtl number P, and the Coriolis parameter q* 
are defined by 

(2 .4)  
yD3(T,- q) Q2r0 p s - ,  V q * E -  4q0 SZDs 

VL . R E  
VK K 

The coefficient y of thermal expansion and the thermal diffusivity K have been used 
in these definitions. The operator A2 represents the two-dimensional Laplacian in the 
(x,y)-plane. The parameter q* is analogous to the parameter of the /3-plane 
approximation used in meteorology. The corresponding term in ( 2 . 3 ~ )  describes the 
effect of the stretching of vortex lines as they change their distance from the axis. In 
spite of the smallness of qo, q* is typically a large parameter since we are interested 
in the limit of high rotation rates Q. 

For the solution of (2.3) we introduce the Galerkin representation, 

$ = r, [amn cos na( y - ct ) + CEmn sin na( y - ct ) ]  gm (x) + F( x) , ( 2 . 5 ~ )  
mn 

0 = [6,, cos na( y - ct ) + b:, sin na( y - c t ) ]  sin mx (x + t )  , (2.5b) 

where the subscripts m and n run through all positive integers and where in addition 
the terms with hmOl 6,, are included. F ( x )  denotes an additional term which is needed 
to satisfy the boundary conditions for the mean zonal flow. Two different types of 
conditions at the boundaries x = &twill be considered and corresponding choices for 
the functions g , ( z )  will be made. In  all cases the temperature 0 vanishes at the 
boundaries. 

For applications to laboratory experiments no-slip conditions are of special 
interest, 

g,(x)  = (d/dx)g,(x) = 0 at x = *&. (2.6a) 

rnn 

6-2 
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A complete set of function satisfying those conditions has been introduced by 
Chandrasekhar (1961),  

cash K ,  X COS K ,  X 

cosh K,/2 COS K,/2 
- for odd m 

(2.6b)  
sinh K, x sin K, x 
sinh ~ , / 2  sin ~ , / 2  

- for even m 

F(x) C ; ( X ~ - ~ X )  ( 2 . 6 ~ )  

and a table for the values K ,  can be found in that reference. Since no mean pressure 
gradient in the y-direction is allowed, but an average zonal flow must be admitted, 
the y-average of + may have finite values at  x = &k.  The function 

[ grn(X) 

is a solution of the homogeneous equation a47,b/ax4 = 0 and a constant Ci is determined 
by the condition of vanishing mean azimuthal pressure gradient, 

(2 .6d)  

The solution forP(x) = 0 would correspond to the case when a barrier at  y = yo would 
support a mean pressure gradient together with the requirement of a vanishing 
azimuthal mean flow. 

Another case of interest is stress-free boundary conditions for the fluctuating 
component of the velocity field with the possibility of a periodic continuation of the 
layer. The complete set of functions corresponding to the conditions 

gm(x)  = (d2/dx2)g,(x) = 0 at x = -t+ (2 .7a)  
is given by 

g,(x) = sinmn(x+i). (2.7b) 
The periodic continuation of the layer requires that the mean azimuthal flow U 
satisfies the conditions 

( 2 . 7 ~ )  
and leads to the prescription 

F(x) = (x2-+) 2 mnci,,. (2 .7d)  

The boundary conditions (2 .7) ,  motivated by a model of convection in the Jovian 
atmosphere, were introduced by OB87. We shall refer to this case as the case of 
periodic boundary conditions. Conditions (2 .7a ,  b)  without the imposition of a 
periodic mean flow have been used by Schnaubelt (1992) and by Brummell8z Hart 
(1992). The latter paper is restricted to the case P = 1 ,  but emphasizes higher 
Rayleigh numbers than those used by Schnaubelt (1992) and in the present analysis. 

Solutions (2 .5)  in the form of stationarily drifting rolls or columns can be obtained 
for constant coefficients dmn, Zmn, b,,, bmn. An algebraic system of equations for these 
coefficients is obtained after the representation (2 .5)  has been introduced into (2 .3)  
and these equations have been multiplied by the expansion functions and averaged 
over the fluid domain. Because of the translation invariance in the y-direction we can 
fix the phase of the solution by setting a coefficient, say a‘,,, equal to zero and using 
the corresponding equation for the determination of the phase velocity c. In  order to 
obtain a numerical solution with a Newton-Raphson method we must truncate the 
system of equations. We shall neglect all coefficients and corresponding equations, 
with subscripts m, n satisfying 

m-odd 

n r  

m+n >NT. (2 .8)  
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By changing NT we can check the accuracy of the approximation. 

superposition of infinitesimal disturbances, 
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The stability of the stationary solution of the form (2.5) can be studied through the 

with 
d(x3 -ix) exp {crt} ford = 0 

ford =I= 0, 
&, Y, t) = ( 2 . 1 0 ~ )  

(2.10b) 

in the case (2.6), and with the definition 

P(x, y , t )  = (x2-i) mxd,,exp{id(y-ct)+at). (2.11) 
m-odd 

in the case (2.7). For reasons of continuity the conditions ( 2 . 7 ~ )  for the mean flow 
have been extended to long-wavelength disturbances in (2.1 l) ,  since d usually 
assumes rather small values. The corresponding condition ( 2 . 1 0 ~ )  does not cause any 
discontinuity since it represents the smooth transition from finite values of d to the 
case d = 0. The introduction of the ansatz (2.9) in the linearized equations yields a 
system of linear homogeneous equations with cr as eigenvalue. For a given stationary 
solution of the form (2.5) the eigenvalues cr are computed as functions of d and the 
value of v with maximum real part crr is determined. Whenever this value is positive 
the stationary solution is unstable ; otherwise it is regarded as stable. For given P and 
T,I*, regions of stable stationary solutions can thus be determined in the (R, a)-plane. 

Since the instabilities often grow with finite imaginary part cri of the eigenvalue cr, 
their evolution can be followed 9nly”by a forward integration in time. For this 
purpose the coefficients d,,, &,,, bmn, b,, in (2 .5)  are assumed to be time dependent, 
and instead of the system of nonlinear algebraic equations a system of first-order 
differential equations in time must be solved. For this purpose a second-order 
Adams-Bashforth method, a fourth-order RungeKutta scheme, or a Crank- 
Nicolson method have been employed. Depending on the character of the evolving 
time-dependent solutions either one of the first two computationally less intensive 
methods or the latter method known for its numerical stability, have been used. 

3. Stationary solutions and their instabilities 

symmetry and admit stationary solutions of the form (2 .5)  with the property 
In the case without curvature, e = 0, the basic equations exhibit an additional 

n 

(3.1) 
Y .  

dmn = amn = b,, = b,, = 0 for m+n = odd. 

These solutions have been called symmetric thermal Rossby waves and are preferred 
at low Rayleigh numbers since they correspond to the strongest growing modes at  
the onset of convection. Because of the property (3.1) the disturbances of the form 
(2.1) separate into two classes, symmetric disturbances with vanishing coefficients 
a”,,, 6,, for odd m + n and anti-symmetric disturbances with vanishing coefficients 
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FIGURE 2. Stability regions of symmetric rolls (between solid and dashed lines) and of mean flow 
convection (between dashed and upper dotted lines) in the case of rigid boundaries with P = 0.7 for 
(a) q* = 2800, ( b )  v* = 1600 and (c) q* = 800. The lower dotted line indicates the neutral curve for 
the onset of convection ; solid, dash-dotted, and double-dashed curves indicate various sideband 
mechanisms of instability. In  (c) the short dash - long dash curve on the right-hand side indicates 
the range of existence - at finite amplitudes - of the mean flow convection solution. The range 
between this curve and the single-dash curve thus indicates the regime in which the mean flow 
solution is subcritical in the parameter a. 

for even rn + n. Among the former disturbances are the sideband instabilities which 
limit the range of wavenumbers a for which the symmetric thermal Rossby waves are 
realizable. To the latter class of disturbances belong the mean flow instability and the 
vacillating instability. 

A typical plot of the stability boundaries is shown in figure 2(a). Although rigid 
boundary conditions (2.6) have been assumed for these cases, the stability boundaries 
are remarkably similar to those shown in OB87 for the periodic case (2.7). After the 
onset of the mean flow solution this asymmetric form of convection remains 
stationary in the appropriately drifting frame of reference for a relatively small range 
of the Rayleigh number until it  becomes unstable with respect to the onset of 
amplitude vacillations. The vacillation instability is typically associated with a small 
value of the Floquet parameter d ,  but growing disturbances also exist for d = 0, 
albeit at a somewhat higher Rayleigh number. The term 'vacillations' was originally 
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FIGURE 3. The dependence of the Nusselt number Nu on the wavenumber a for the cases R = 
2.5 x lo4, P = 0.7, q* = 800 (solid) and R = 2.25 x lo*, P = 0.3, v* = 1600 (dashed). The bifurcating 
curves corresponds to mean flow convection. In the second case it has not been possible to continue 
the mean flow solution all the way to the bifurcation point. 
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FIGURE 4. Stability regions of symmetric rolls (indicated by S) in the case of rigid boundaries with 
P = 7 for (a) q* = 2800, (b)  q* = 1600 and (c )  q* = 800. The lowermost dotted curve indicates the 
neutral curve ; the other dotted curve indicates the onset of vacillations. The dashed curve indicates 
the onset of the mean flow instability. Solid and double-dashed curves indicate various modes of 
sideband instability. In (c )  the dash-dotted curve indicates the extent to which finite-amplitude 
mean flow convection coexists with stable symmetric convection rolls ; i.e. subcriticality of the 
mean flow solution with respect to a occurs in this region. 
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FIGURE 5. Real parts vr (solid lines) and imaginary parts v, (dotted lines) of sideband instabilities 
for P = 7, v* = 1600, R = 3.5 x lo4. The lower lines correspond to a = 10.7 the upper ones to a = 
10.8. 

introduced in the case of the baroclinic annulus experiment (see, for example, Hide 
& Mason 1975). Typically, spatially averaged properties vary as much in time as the 
spatially fluctuating fields, in contrast to other wave phenomena. 

As the rotation parameter q* is decreased the stability boundaries change 
relatively little on the right-hand side of the diagram, but the vacillation instability 
begins to disappear for small wavenumber a as shown in figure 2 ( b )  for r* = 1600. 
At even lower values q* the mean flow instability also becomes restricted to 
wavenumbers a exceeding the critical value a, and the symmetric thermal Rossby 
waves remain stable up to a t  least ten times the critical value of the Rayleigh number 
if the wavenumber is located within a certain band below a,. Thus the stability 
properties approach fairly smoothly the non-rotating limit of the problem for which 
no two-dimensional instability is known to restrict the range of stable convection 
rolls until much higher Rayleigh numbers. 

When the mean flow convection solution is followed from its bifurcation point, it 
is found to exist at finite amplitude over wider range of a than suggested by the 
stability theory. I n  terms of increasing a the bifurcation occurs subcritically as 
indicated in figure 2 ( c ) .  A more detailed picture of the bifurcation is shown in figure 
3 where the Nusselt number has been plotted. This plot also demonstrates the sharp 
drop in the convective heat transport after the onset of the mean flow convection, 
which is caused by the fact that the convection velocity is diminished on one side of 
the layer and replaced by a nearly stagnant region which tends to impede the heat 
transport. 

A similar set of stability diagrams for P = 7.0 instead of P = 0.7 is shown in figure 
4. Here a vacillation-type instability precedes the transition to the mean flow 
solution in the cases r* = 2800 and 1600. In the latter case the vacillating solution 
exists only for an intermediate range of Rayleigh numbers after which a return to 
symmetric thermal Rossby wave convection occurs at least for values of a less than 
the critical value. The case of q* = 800 is characterized by an enlargement of the 
region of stable symmetric convection on the one hand and by a substantial 
subcritical region of finite-amplitude mean flow convection on the other hand as 
shown in figure 4 ( c ) .  

It has already been apparent from the more limited analysis of OB87 that in 
addition to the Eckhaus instability, which restricts the wavenumber region for stable 



2.0 

1.8 

R 
x lo-' 

1.6 

I .4 

1.2 

Convection in a rotating cylindrical annulus. Part 3 

2 

I 5 
6 7 8 9 2 4 6 

a U 

163 

FIQURE 6. Stability regions of symmetric rolls (indicated by S) and of mean flow convection 
(indicated by M) in the case of rigid boundaries with P = 0.3 for (a) q* = 2800 and (b )  y* = 1600. 
The lower dotted line indicates the neutral curve for onset of convection, the upper dotted line the 
onset vacillations; the intermediate dotted line in (a) indicates the onset of vacillations in the 
absence of mean flow convection and has been computed only for a short range of wavenumbers 
a. The long dash-dotted line in ( b )  indicates the extent (towards low wavenumbers a) to which 
finite-amplitude mean flow convection coexists with stable symmetric rolls. The other dash-dotted 
curves and the solid curves indicate various sideband instabilities. 

rolls close to the critical Rayleigh number, there exist other sideband mechanisms of 
instability which set in with finite values of d. From the stability boundaries shown 
in figures 2 and 4 it is evident that quite a few distinguishable sideband instabilities 
restrict the region of stable symmetric convection or mean flow convection toward 
high and low values of a. The growth rates crr of these instabilities often correspond 
to multiple maxima of the same eigenvalue as a function of d as shown in figure 5.  
For a semi-analytical treatment of these modes we refer to Or (1990). 

In figure 6 two stability diagrams for the case P = 0.3 are shown which resemble 
in their qualitative aspects those obtained for P = 0.7 in the cases q* = 800. In 
contrast to the results of OB87 for periodic boundary conditions the mean flow 
instability remains the predominant instability over a large interval of the parameter 
r*. 

4. Vacillating convection 
The vacillation instability reaches its maximum growth rate a t  a finite value of d. 

But since this value of d is usually relatively small and since the growth rate for 
d = 0 approaches the maximum value closely, it is justified to consider the case 
d = 0. In applications to laboratory experiments the case d = 0 may actually be 
preferred because only discrete values of d are permitted in an annulus with finite 
ratio D/ro.  The assumption d = 0 leads to a significant simplification of the numerical 
solution ofA the system of ordinary differential equations in time for the coefficients 
d,,, aYmn, b,,, gmn. Forward integrations in time have been performed primarily for 
the case of periodic boundary conditions (2.7) that has already been considered in 
OB87. 

After short transients the solutions exhibit periodic variations in the absolute 
values of Id:, +a:,I which are typical for vacillation phenomena. The period- 
doubling sequence found in OB87 has been confirmed. The fact that the truncation 
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FIGURE 7. Time dependence of the Nusselt number (solid), of the coefficient Ci,, (dashed) of +uyl 
(dotted), and of C;&+ui, (dash-dotted) for (a) R = 38400 and (b) R = 38900 in the case of periodic 
boundary conditions with P = 1, a = 9.4, v* = 2800. 
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FIGURE 8. Nusselt number Nu (solid), drift rate c (dotted), and kinetic energy Em, of the mean 
component of motion (dashed) as a function of the Rayleigh number for periodic boundary 
conditions with P = 1, a = 9.4, q* = 2800. The first point of bifurcation a t  R = 35 x lo3 corresponds 
to the onset of mean flow convection, the second bifurcation corresponds to the onset of 
vacillations. The kinetic energy of the fluctuating component of motion exhibits the same 
dependence on R as Nu-1 except it is larger by a factor of about 200. 

parameter NT = 6 has been used in place of NT = 4 used in OB87 causes only a minor 
shift towards higher values of the Rayleigh numbers at  which the bifurcations occur. 
In figure 7 the time dependence of some typical coefficients is displayed. The first 
period doubling occurs for 37500< R < 38000; a t  R = 38400 a quadrupling has 
taken place and at R = 38500 a further doubling has occurred. Soon thereafter 
chaotic solutions are found as expected according to the Feigenbaum scenario. In 
these vacillating solutions the convection appears to oscillate between a nearly 
symmetric state as indicated by small values of coefficients 1drn,J with odd m + n and 
a state exhibiting the properties of the mean flow solution. 

Since there are two mean flow solutions there are also two types of vacillating 
solutions differing by the sign of the coefficients 6rnn, &rnn with odd m+n. In the 
chaotic region at  a Rayleigh number of about 38600 and beyond these two types are 
intermingled and some of the time-periodic solutions which appear as windows 
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FIGURE 9. (a) Plots of streamlines at  equal time intervals At = (6 x 26.73)-' for the case P = 0.7, 
y* = 800, R = 7 x lo4, a = 6 with rigid boundaries. The streamlines are seen in the frame of reference 
drifting with the speed c = 15.98, such that the position of the rolls remains steady. While the plots 
cover a full period of the primary frequency (see b), the last plot differs from the first one because 
of contributions from other frequencies. (b) Time dependence of the coefficient 6,, and 
corresponding Fourier spectrum (total range is 5 decades) for the same case as (a) with R = 
4.5 x lo4, R = 6 x lo4, and R = 7.5 x 104 (from top to bottom). 
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within this region show a periodic alteration between the two signs as shown in the 
example in figure 7 ( b ) .  At higher values of the Rayleigh number windows of periodic 
solutions with a single sign of the coefficients ti,,, d,, predominate again. 

A main physical cause for the onset of vacillations appears to be the decrease with 
increasing Rayleigh number of the convective heat transport associated with mean 
flow convection. Because the amplitude of the latter is stronger on one side of the 
convection layer than on the other, an extended thermal boundary layer is needed 
at  the opposite side to carry the heat flux. The buoyancy stored in this layer is 
converted by the vacillations into an increase of the kinetic energy of motion as is 
evident from figure 8. Similarly the drift rate of the rolls which decreases after the 
onset of the mean flow convection owing to a reduced stretching of vortex lines, 
increases again after the onset of vacillations as convection reoccupies the entire 
layer. 

For smaller values of y *  the maximizing Floquet parameter d, tends to increase 
and a study of vacillating convection based on the assumption d = 0 becomes less 
appropriate. In  order to accommodate the evolving spatially modulated vacillating 
solutions within the representation (2.5) with time-dependent coefficients, a new 
wavenumber h = a/M has been defined, where M is a small natural number, say 
2 < M < 6. By selecting values of M close to a/d, and by replacing the truncation 
condition (2.9) by 

we have been able to solve the time-dependent equations for the coefficients a,,(t) 
in the case when Oi has replaced a in the representation (2.5). These computations 
have been carried out primarily in the case of rigid boundaries because the values of 
d, are especially favourable in this case. It is expected that no significant differences 
will appear when other boundary conditions are used. 

An example of spatially modulated vacillating convection is shown in figure 9. The 
modulation assumes the form of a local depression of the amplitude of convection 
which propagates relative to the convection pattern. We note that the azimuthal 
scale of the streamline plots in this and in later figures has been stretched in order 
to better visualize some of the details. As the Rayleigh number is increased the 
spectrum of frequencies in the time series of a typical coefficient, say &, becomes 
more complex and finally the time dependence becomes chaotic as shown in figure 
9 ( b ) .  This state exists only over a limited range of Rayleigh numbers. In  the example 
of figure 9 ( b )  convection returns to a periodically vacillating state with the 
wavenumber 01 = 4.8 instead of a = 6.0 when R reaches 7.6 x lo4. The rearrangement 
of the convection rolls into a spatially periodic pattern with a somewhat larger 
wavelength offered by the computational scheme appears to be typical in all cases 
that have been investigated. 

The technique of enlarging the wavenumber spectrum in order to include small but 
finite values of d ,  has also been employed in the case of some of the sideband 
instabilities. As expected from the case of the Eckhaus instability the evolution of 
these instabilities leads to the establishment of a stationary solution with a 
wavenumber a = afd, in the stable region. 

m+n/M > NT (4.1) 

5. Convection in the presence of curved end surfaces 
The special case 6 = 0 of equations (2.3) considered in the preceding section has 

permitted the inversion symmetry of symmetric therma! Royssby waves which 
manifests itself in the vanishing of all coefficients timn, a',,, b,,, b,, with odd m+n. 
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FIGURE 10. Stability boundaries of convection rolls in the case of curved end surfaces, E = 1 : (a) 
rigid boundaries with y* = 2800, P = 0.7; (b) periodic boundaries with y* = lo4, P = 1. The lower 
dotted curve indicates the onset of convection, the upper dotted curve the onset of vacillations, 
solid lines sideband instabilities and dashed lines the double-column instability. 

This symmetry disappears as soon as finite values of e are considered. As a 
consequence the bifurcation of the mean flow solution from the symmetric convection 
rolls can no longer be distinguished. It may be seen a t  most in the form of an 
imperfect bifurcation in the limit of small 6. On the other hand new effects can be 
expected. Since the characteristic frequency and wavenumber of convection rolls 
depend on r*, the rolls tend to prefer different drift rates and even different 
wavelengths on the two sides of the layer if 6 is sufficiently large. Indeed, one of the 
main results of the analysis is the breakup of the convection layer into two or more 
sublayers. In order to demonstrate these effects we shall focus attention on the case 
e = 1 in this section. 

The onset of convection in the case e = 1 corresponds to rolls which are mostly 
confined to the inner, i.e. x < 1,  part of the layer. As the Rayleigh number increases 
they become unstable with respect to the vacillation instability or with respect to the 
double-column instability, so named in OB87 because of the tendency of the 
disturbances to create a second row of rolls in the outer part of the layer. In  the 
stability diagrams of figure 10 it is evident that both instabilities are in close 
competition with the vacillations preceding the onset of double columns in the case 
of rigid boundaries while the opposite situation prevails in the case of periodic 
boundary conditions. Similar stability diagrams are found for other values of q* for 
which we refer to Schnaubelt (1992). 

In OB87 the evolution of the double-column instability was studied numerically 
by introducing two sets of representations (2.5) into the basic equations, each with 
i:s own characteristic wavenumber, and by using common mean field coefficients limo, 
bmo. The quality of this mean field approximation can now be tested through the use 
of the scheme developed for the computations of modulated convection. Since the 
double-column instability is characterized by relatively large values of d of the order 
of Qa or even ;a the computations can be carried out up to quite high values of the 
truncation parameter NT in condition (4.1). A typical case of double-column 
convection is shown in figure 11 where the set of rolls in the lower part of each plot 
propagates relative to the row of rolls in the upper part, best seen in the left part of 
the figure in which the mean zonal component of @ has been omitted. A detailed 
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FIQCJRE 11. Plots of streamlines a t  equal time intervals At = 2.8 x for the case P = 1, E = 1, 
T* = lo4, a = 10.5, R = 2 x lo5 with periodic boundary conditions. Approximately one half-period 
has been covered. The stream function with y-average subtracted is shown in column (a), the total 
stream function is shown in (b). The reference frame propagates with the drift rate c = 15.73 of the 
inner convection rolls which thus remain fixed in position. 
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FIQURE 12. Plots of streamlines at equal time intervals At = 1.5 x for the same case as figure 
11, but with R = 2.3 x lo6, c = 8.43. Columns (a )  show the total stream function while the y-average 
of the stream function has been subtracted in columns ( b ) .  In each case the time sequence is from 
top to bottom in the first column, then in the second column. 
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FIGURE 13. Time dependence of the coefficient d,, and corresponding spectra a t  ten Rayleigh 
numbers with equal increments of lo4 between 2 x lo5 and 2.9 x lo5 for P = 1, q* = lo4, E = 1, 
a = 10.5, d = $a. The spectra are obtained from records continuing up to t  = 8.0 and the logarithmic 
scale of the spectra extends over 5 decades. 

I f 

inspection of the coefficients indicates that those corresponding to m = pM and to 
m = p(M + l ) ,  p = 0, 1 , 2 , .  . . predominate in comparison to others and are nearly 
constant in time as must be expected for two nearly independent thermal Rossby 
waves. This property supports the assumption made in the analysis of OB87 where 
a, = M& and a2 = (M+ l ) &  have been used, albeit at a different place in the 
parameter space. Only as the Rayleigh number is increased further, do interaction 
coefficients other than mean field coefficients become important. 
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FIQURE 14. Nusselt number, Nu-1 (solid), kinetic energy of the mean component (dashed), and of 
the fluctuating component (dotted, right ordinate multiplied by factor 4) as a function of the 
Rayleigh number for P = 1, E = 1, q* = lo4, a = 10.5 with periodic boundary conditions. 

At the Rayleigh number 2.3 x lo5 the convection state returns to the single 
wavenumber a = 10.5, i.e. the second thermal Rossby wave adjusts its wavenumber 
to that of the first thermal Rossby wave, but they still propagate relative to each 
other as shown in figure 12. In this particular case a division of the layer into three 
sublayers is noticeable, in which convection rolls in the centre are combined in an 
alternating fashion with the outer and the inner row of convection rolls. The 
interlude of a singly spatially periodic pattern gives way to a more complex pattern 
at  a higher Rayleigh number of the order 2.4 x lo5 where all coefficients offered in the 
scheme assume finite amplitudes. This development quickly leads to a chaotic time 
dependence as shown in figure 13 where some of the transitions can be recognized in 
the Fourier spectra. 

The onset of the second row of convection rolls leads to a strong increase of the 
convective heat transport and of the kinetic energies of various components as shown 
in figure 14. Even as the time dependence becomes aperiodic the rate of increase of 
these quantities does not diminish. 

6. Discussion 
Convection induced by centrifugal buoyancy in a rotating annulus with finite q* 

shares with convection in a layer heated from below and rotating about a vertical 
axis the property that the reflection symmetry in the azimuthal direction is lost. In 
the annulus problem this loss manifests itself in the azimuthal drift of convection 
columns and in the phase shift between the radial velocity component and the 
temperature. The phase shift causes subsequent bifurcations which are absent in the 
case q* = 0. The dynamic phenomena exhibited by two-dimensional convection in an 
annulus are thus as rich as those characterizing three-dimensional convection in 
layers heated from below, but they are much more accessible to numerical analysis. 

In the preceding section some typical dynamic feature have been described and the 
prominent role of mean zonal flow has been emphasized. The tendency of the 
convection layer to break into several layers of convection rolls propagating at  their 
own speed is the most interesting result of this analysis. This property lends support 
to the model of Busse (1976, 1983) of a sequence of five cylindrical layers in the 
equatorial region of the Jovian atmosphere. As was noted in OB87, a number of other 
features of annulus convection appear to be related to observations on Jupiter, such 
as the cyclonic nature of the convection eddies as seen, for example, in figure 11. 
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There is little theoretical evidence for the relatively large azimuthal wavelengths of 
the small cyclonic features in the Jovian atmosphere such as the brown barges or the 
cores of the north equatorial plumes. Perhaps isolated convection columns embedded 
in regions of more or less quiescent fluid will become a typical phenomenon at much 
higher Rayleigh number than those reached in the present analysis. 

A most interesting property of vacillating convection is the strong increase in the 
heat transport in comparison with steadily drifting rolls. This property contrasts 
with usual decrease of the convective heat transport after the onset of the oscillatory 
instability in the case of a non-rotating Rayleigh-BBnard layer. The conservation of 
angular momentum tends to suppress the radial component of flow and time- 
dependent processes are obviously more efficient to overcome this constraint of 
rotation. In  the particular case of the annulus the low heat transport by the mean 
flow convection is caused by the nearly stagnant region that develops near the inner 
or near the outer boundary. The onset of vacillations disrupts this stagnant layer and 
thus leads to an increase of the heat transport. Since the region of parameter space 
that has been explored by numerical computations is still rather limited, detailed 
observations of time-dependent processes in experiments or on Jupiter will be helpful 
to learn more about the mechanisms which contribute to an effective convective heat 
transport. 

A new generation of laboratory annulus experiments appears to be desirable, 
because values of 1;1* realized in previous experiments (Busse & Carrigan 1976; Busse 
& Hood 1982; Azouni, Bolton & Busse 1985) did not exceed a few hundred. Although 
the comparisons with the predictions of linear theory show reasonable quantitative 
agreement, the experimental observations of nonlinear effects have remained at a 
qualitative level. In order to reach the physically interesting region of 1;1* x lo3 or 
more, larger gap widths and higher rotation rates are needed than have been used in 
the past. It is hoped that some of the interesting phenomena seen in the numerical 
simulations will inspire experimental fluid dynamicists to adopt the rotating annulus 
experiment as a tool for basic research. 

The research reported in this paper has been supported by the Deutsche 
Forschungsgemeinschaft under grant BU589/2- 1. 
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